Biophysical properties and responses to neurotransmitters of petrosal and geniculate ganglion neurons innervating the tongue.
نویسندگان
چکیده
The properties of afferent sensory neurons supplying taste receptors on the tongue were examined in vitro. Neurons in the geniculate (GG) and petrosal ganglia (PG) supplying the tongue were fluorescently labeled, acutely dissociated, and then analyzed using patch-clamp recording. Measurement of the dissociated neurons revealed that PG neurons were significantly larger than GG neurons. The active and passive membrane properties of these ganglion neurons were examined and compared with each other. There were significant differences between the properties of neurons in the PG and GG ganglia. The mean membrane time constant, spike threshold, action potential half-width, and action potential decay time of GG neurons was significantly less than those of PG neurons. Neurons in the PG had action potentials that had a fast rise and fall time (sharp action potentials) as well as action potentials with a deflection or hump on the falling phase (humped action potentials), whereas action potentials of GG neurons were all sharp. There were also significant differences in the response of PG and GG neurons to the application of acetylcholine (ACh), serotonin (5HT), substance P (SP), and GABA. Whereas PG neurons responded to ACh, 5HT, SP, and GABA, GG neurons only responded to SP and GABA. In addition, the properties of GG neurons were more homogeneous than those of the PG because all the GG neurons had sharp spikes and when responses to neurotransmitters occurred, either all or most of the neurons responded. These differences between neurons of the GG and PG may relate to the type of receptor innervated. PG ganglion neurons innervate a number of receptor types on the posterior tongue and have more heterogeneous properties, while GG neurons predominantly innervate taste buds and have more homogeneous properties.
منابع مشابه
Neuron/target plasticity in the peripheral gustatory system.
Taste bud volume on the anterior tongue in adult rats is matched by an appropriate number of innervating geniculate ganglion cells. The larger the taste bud, the more geniculate ganglion cells that innervate it. To determine if such a match is perturbed in the regenerated gustatory system under different dietary conditions, taste bud volumes and numbers of innervating neurons were quantified in...
متن کاملInnervation of single fungiform taste buds during development in rat.
To determine whether the innervation of taste buds changes during postnatal development, the number of geniculate ganglion cells that innervated single fungiform taste buds were quantified in the tip- and midregions of the tongue of adult and developing rats. There was substantial variation in both the size of individual taste buds and number of geniculate ganglion cells that innervated them. I...
متن کاملDiscrete innervation of murine taste buds by peripheral taste neurons.
The peripheral taste system likely maintains a specific relationship between ganglion cells that signal a particular taste quality and taste bud cells responsive to that quality. We have explored a measure of the receptoneural relationship in the mouse. By injecting single fungiform taste buds with lipophilic retrograde neuroanatomical markers, the number of labeled geniculate ganglion cells in...
متن کاملDevelopment of gustatory organs and innervating sensory ganglia.
Taste function requires neural circuits to transmit gustatory information from taste receptor cells in taste buds, via afferent nerves to the soma of ganglion neurons, and through central ganglion processes into the brainstem. During initial formation, the sensory ganglion neurons have a key situation in establishing receptive fields by extending neurites bidirectionally, to the peripheral tast...
متن کاملAcetylcholine sensitivity in sensory neurons dissociated from the cat petrosal ganglion.
The petrosal ganglia contain the somata of the sensory fibers of the glossopharyngeal nerves, innervating structures of the tongue, pharynx, carotid sinus and carotid body. Petrosal ganglia were excised from adult cats and their neurons were dissociated and kept in tissue culture for 7-12 days. Intracellular recordings were obtained through conventional microelectrodes. In response to depolariz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 84 3 شماره
صفحات -
تاریخ انتشار 2000